Recent advances in vegetable virus research
—ISHS 9th conference of the vegetable virus working group meeting in Turin, Italy, 22-27 August 1998

J D Fletcher
August 1998

Confidential
Copy 9 of 9
Circulation of this report is restricted. Consult the author and the Institute's Scientific Editor about obtaining further copies. This report may not be copied in part or full.

New Zealand Institute for Crop & Food Research Limited
Private Bag 4704, Christchurch, New Zealand
<table>
<thead>
<tr>
<th></th>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EXECUTIVE SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>TRAVEL DETAILS</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3.1 Itinerary</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3.2 Financial support</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3.3 Contacts made</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>OBJECTIVES AND RESULTS</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4.1 Objectives</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4.2 Results</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4.2.1 Objective 1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4.2.2 Objective 2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>4.2.3 Objective 3</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>ACKNOWLEDGMENTS</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>APPENDICES</td>
<td>10</td>
</tr>
</tbody>
</table>
1 EXECUTIVE SUMMARY

I travelled to Turin, Italy, in August 1998 to attend the ISHS 9th conference of the Vegetable Virus Working Group meeting. The trip was co-funded by Crop & Food Research and the New Zealand Vegetable and Potato Growers' Federation. The conference is a unique opportunity for researchers working specifically on viruses of vegetable crops to discuss their work. Vegetable crops covered included tomatoes, Cucurbita (squash, cucumber, zucchini, melons, etc.), peas, Alliums (onions, shallots, garlic), brassicas (cauliflower, cabbage). Topics covered include descriptions of new diseases, control strategies, detection and diagnosis, new approaches to continuing problems, and opportunities for collaboration.

The objectives of the trip were to:

1. improve my knowledge and capability in the understanding and control of vegetable viruses and related diseases. This is the first opportunity I have had to meet with colleagues I have communicated with for the past 10 years through our annual newsletter,

2. present a conference paper on squash virus epidemiology, which will be an opportunity to publicise progress we have made in the understanding and control of the two viruses (ZYMV and WMV2) that are important to our squash industry. It will also allow discussion with colleagues, particularly on possible approaches to virus control used by others that may be relevant to New Zealand, and

3. visit Dr Jaques Derron at the Swiss Federal Station at Changin-Nyon to update myself on their strategies to control virus diseases of potatoes and other field crops.

Key observations include:

1. the continued emphasis on ELISA, a system we routinely use,

2. new diseases of interest including whitefly-transmitted geminiviruses of tomatoes. Vectors of these diseases, e.g. Bemisia tabaci, are already in New Zealand. It appears that these diseases can be controlled by carefully eliminating alternative hosts,
3. reflective mulches, net covers and UV-absorbing plastic were all discussed as successful ways of controlling aphid-borne viruses. Oil sprays, when carefully applied, can also reduce the incidence of viruses transmitted by aphids,

4. conventional breeding of resistant cultivars continues to be important and can be enhanced by genetically modified resistance or cross protection. Tailoring viruses in the future to be defective as vectors and protecting plants with a cocktail of mild viruses may be options,

5. the ease of vegetable produce transportation between countries is likely to aggravate future disease problems.

Our work on ZYMV and WMV2 was well received. We are amongst the leaders of research on seed transmission of viruses in squash.

The conference was an excellent opportunity to extend my networks with virus researchers and I made contact with some research teams who may be interested in collaborating with Crop & Food Research in the future.
2 INTRODUCTION

The Vegetable Virus Working Group is a network of virus researchers that extends throughout the world and specializes in research on vegetable viruses. The Group meets every three years, usually in Europe. This is one meeting where discussion and presentations are focussed on the needs of virologists specialising in vegetable diseases. It is an opportunity to meet with some of the world leaders in vegetable virus research. Vegetable crops covered included tomatoes, Cucurbita (squash, cucumber, zucchini, melons, etc.), peas, Alliums (onions, shallots, garlic), brassicas (cauliflower, cabbage). Topics covered include descriptions of new diseases, control strategies, detection and diagnosis, new approaches to continuing problems, and opportunities for collaboration.
3 TRAVEL DETAILS

3.1 Itinerary

20-21 August 1998 Travel from Christchurch to Turin, Italy

22-27 August Conference, field trip and research station visit

28-29 August own arrangements

30 August - 1 September Travel from Turin to Christchurch.

3.2 Financial support

VegFed Fresh Vegetable R&D Committee $2500
Crop & Food Research $3200
TOTAL $5700

3.3 Contacts made

A list of the 73 attendees is attached in Appendix I. The small size of the conference ensured easy and meaningful discussion with almost all of those present.
4 OBJECTIVES AND RESULTS

4.1 Objectives

Objective 1: To improve my knowledge and capability in the understanding and control of vegetable viruses and related diseases by attending the 9th Conference of the ISHS Vegetable Virus Working Group, Turin, Italy. This is the first opportunity I have had to meet with colleagues with whom I have communicated for the past 10 years through our annual newsletter.

Objective 2: To present a conference paper, on squash virus epidemiology. This forum is an opportunity to publicise progress we have made in the understanding and control of the two viruses (ZYMV and WMV2), which are important diseases to our squash industry. Presentation of my paper will also allow discussion with colleagues and an update on possible approaches to virus control used by others that may be relevant to New Zealand.

Objective 3: To visit Dr Jaques Derron at the Swiss Federal Station at Changin-Nyon to update myself on their strategies to control virus diseases of potatoes and other field crops.

4.2 Results

4.2.1 **Objective 1**

A copy of the programme of presented papers is attached in Appendix II.

Sessions were organised around particular themes. On Day One we covered identification, characterisation and new diseases. Of particular interest was the continued emphasis on the use of ELISA, a system we use, as a cheap and easy method for virus detection and identification. New, more sensitive and expensive systems should only be used when there are no alternatives. One example is the PCR-based system ‘Taq Man’, which uses fluorescent markers to record a real time analysis of virus, nematode, bacterial or fungal product. This proven system has been approved for purchase by our research group.

New diseases of interest include whitefly-transmitted geminivirus diseases of tomatoes. In New Zealand we now have some vectors (e.g. *Bemisia tabacii*) which are
capable of transmitting such diseases. In fact, it was pointed out that whitefly can transmit tomato yellow leaf curl virus (TYLCV) sexually amongst themselves, thus amplifying the disease risk if live insects enter our country. Other diseases included those of shallot, garlic, brassicas and peppers. Zucchini yellow mosaic virus (ZYMV) and watermelon mosaic virus 2 (WMV2) have recently been recorded in Holland, resulting in speculation that long distance transmission by aphid vectors was responsible for the spread of these diseases, a view not always supported by all.

Ecology and epidemiology were covered on Day Two. Geminiviruses were under discussion again. It was encouraging to learn that these diseases can be controlled by careful elimination of alternative hosts (crops or weeds), thereby breaking the vector reproduction cycle. The importance of turnip mosaic virus (TuMV) in Italian brassica crops was discussed. This virus, and its many strains, is regarded as very important in Europe. In New Zealand TuMV certainly affects vegetables and has recently devastated some forage brassica crops in Canterbury. Bean and radish viruses were also discussed, as was the risk assessment of genetically modified tomato crops. Experimental results indicated that there was no flow of genes responsible for producing transgenic proteins to nearby trap tomato plants through pollen or other means.

Squash viruses were covered with our own work (see below) and a fascinating review of ZYMV research. This virus may spread through seed, displayed fruit at markets, and associated crop weeds. New techniques, such as monoclonal antibodies and PCR, are available to study disease movement and evolution. These tools were used to study changes in pathotypes in Martinique where, for example, one farm was found to have three serotypes and two pathotypes of ZYMV.

On Day Three there was an emphasis on virus control, including genetic engineering. Aphid-borne viruses and their control were discussed. The success of reflective mulches, attractive yellow mulches (aphids are cooked on the hot surface), net covers (which exclude aphids) and UV-absorbing plastic (reduces crop attraction, camouflage), were all discussed.

Reducing virus transmission using oil sprays and the importance of careful application were covered. The use of conventional breeding for virus resistance or tolerance continues to be very important, but can be enhanced by genetically modified resistance or cross protection with mild virus strains (ZYMV-W, TMV-Rast). There may be risks, and these include synergism between different viruses, reversal to wild type from a weak strain, or cross-transfer of genetic material (heterogenous encapsidation) between viruses. Future trends may include tailoring viruses to be defective as vectors and protecting plants with a cocktail of mild viruses. An important observation was that the ease of vegetable produce transportation between countries is likely to aggravate future virus disease problems—we need to be even more on our
guard. Other papers reported conventional resistance to onion yellow dwarf virus (OYDV) in garlic, radish as a source of resistance to TuMV, and tolerance to TLCV amongst wild tomatoes. Transgenic resistance possibilities included cucumber mosaic virus (CMV) in tomatoes, bean common mosaic virus (BCMV) in beans, lettuce mosaic virus (LMV) in lettuce and TLCV in tomatoes.

The final session covered host pathogen interactions. An extremely informative survey was presented demonstrating work on virus movement in plants using a green fluorescence protein attached to potato virus X (PVX). Movement of virus in mature or young leaves is complicated by whether or not these leaves are storing or producing food. Movement is more widespread in older storage leaves. Root-transmitted viruses, whether inoculated onto leaves or roots, tend to concentrate higher in the roots, as do leaf viruses. Virus movement has to be facilitated by protein, for example in cucumber mosaic virus (CMV). These proteins may be similar for many viruses. They appear to form tubule-like filaments on the cell surface. Similar studies on TYLCV demonstrated the movement of viruses into the cell nucleus with the help of a replication-associated protein (T-rep). Other interesting work measured the importance of antioxidant enzymes in a plant’s response to virus infection; there appears to be a close correlation.

4.2.2 Objective 2

Our work on ZYMV and WMV2 was well received, particularly by colleagues who are acknowledged experts on these viruses. They consider our preliminary work on seed transmission an important step, since no one else has such sound data. They were impressed with our epidemiological studies on weeds because they too have few natural cucurbit weeds and have had difficulty finding overwintering hosts. I supplied copies of my data and notes to these colleagues. I feel I made a useful impact and have made some helpful contacts for future research.

A display of poster papers complemented the formal session. Of particular interest were those on TuMV stereotyping; resistance of Cucurbita, including pumpkin, to WMV2 and ZYMV; differentiating strains of ZYMV; virus culture collection and storage; new disease records; epidemiology; pepper and tomato diseases.

Evening tours of the botanical gardens and of the facilities of our hosts, the Instituto di Fitovirologia Applicata, were most interesting. Virus research is undertaken by a staff of about 50. They service mostly northern regions, but work closely with other similar institutes. Interestingly they collaborate closely with other European centres to the point where their research committee has two outside researchers (France and Germany) vetting their projects. Funding is centralised but complimented through provincial research sources, e.g. in Savoy and Liguria. Their 20-year-old facilities would be the envy of most in New Zealand, beautifully constructed and carefully designed.
A field trip to the coastal province of Liguria was most stimulating. We visited production areas for basil (*Ocimum basilicum*), a very important fresh crop around Albenga. Crops are glasshouse grown in cool weather and field grown in summer. Crops are hand harvested daily and bunched for market sale. Bulk hand harvesting for pesto (paste) is also very important. Crop value can reach $1 million/ha. They suffer from a range of fungal root diseases (Fusarium, Rhizoctonia, Pythium), leaf diseases (Botrytis, black spot), but few viruses. A serious problem facing the industry is the replacement of methyl bromide for soil sterilisation. Use of solarisation is promising as is use of antagonistic fungi as a bio-control. The region is also noted for its flower, potted plants and garden centre produce. Large glasshouses and sheltered areas are given over to this. Research support is provided by the provincial government to the Albenga Regional Centre for agricultural experimental aid with a magnificent glasshouse facilities (1450 m²) built with local and EC support. Research focuses on flower and ornamental production and pollution control. Technical advice, pathology support and chemical analyses are also provided. We also visited a local grower-cooperative that markets products and supplies materials and advice. Growers can present problems in the morning and if no satisfactory answer is given a technical rep will visit their property that afternoon to sample or advise. Further on (it was 32°C outside!) we surveyed a glasshouse crop of peppers seriously affected by tomato spotted wilt virus (TSWV), potato virus Y and CMV (a common problem in this region). Most had seen this sort of depressing display in the past, but what was encouraging were the four rows of tolerant or resistant selection’s standing up extremely well under the virus attack. These lines are bred conventionally and will be released over the next two seasons. The technical aspects of the day were offset by a magnificent lunch and a tour of medieval Albenga.

4.2.3 **Objective 3**

This objective was not achieved because Dr Derron had other commitments and was not available for me to visit.
5 ACKNOWLEDGMENTS

I wish to acknowledge the generous financial support for this visit from the New Zealand Vegetable and Potato Growers' Federation.
6 APPENDICES

Appendix I List of participants
ACCOTTO GIAN PAOLO
Istituto di Fitovirologia Applicata - CNR
Strada delle Cacce 73
10135 TORINO TO I

APPIANO ANNA
Istituto di Fitovirologia Applicata - CNR
Strada delle Cacce 73
10135 TORINO TO I

ARZONE ALESSANDRA
Di.Va.P.R.A. - Entomologia
Via L. da Vinci, 44
10095 GRUGLIASCO TO 1

BARBA MARINA
Istituto Sperim. Patologia Vegetale
Via C.G. Bertero, 22
00156 ROMA RM I

BELLARDI MARIA GRAZIA
U.C.I. Istituto Patologia Vegetale
Via F. Re, 8
40126 BOLOGNA BO I

BETTI LUCIETTA
Università-Istituto Patologia Vegetale
Via F. Re, 8
40126 BOLOGNA BO I

BITTERLIN WALTER
Bioreba Ag.
Chr. Merian - Ring 7
CH - 4153 REINACH BL 1

BOCCARDO GUIDO
Istituto di Fitovirologia Applicata - CNR
Strada delle Cacce 73
10135 TORINO TO I

BRUNT ALAN
Brayton
The Thatchway
ANGMERING,
WEST SUSSEX BN16 4HJ GB

CACHIAGLI PIERO
Istituto di Fitovirologia Applicata - CNR
Strada delle Cacce 73
10135 TORINO TO I

CHOD JIRI
Research Inst. of Crop Production
Dronovska 507, Praha 6
CZ - 16106 PRAGUE

CIUFFO MARINA
Istituto di Fitovirologia Applicata - CNR
Strada delle Cacce 73
10135 TORINO TO I

CONTI MAURIZIO
Istituto di Fitovirologia Applicata - CNR
Strada delle Cacce 73
10135 TORINO TO I

COSMI TERESA
Regione Veneto-Osserv.Malattie delle Piante
Lungadige Capuleti, 11
37122 VERONA I
CZOSNEK HENRYK
The Hebrew University of Jerusalem
Faculty of Agriculture
76100 REHOVOT IL

D'AQUILIO MARIANGELA
Istituto di Fitovirologia Applicata - CNR
Strada delle Cacce 73
10135 TORINO TO I

DERIN ENDRIIO
Istiz.Regionale per la Floricoltura di Sanremo
Via Carducci, 12
18038 SANREMO IM I

DONOVAN GEORGINA
University-School of Biological Sciences
Edgraston
BIRMINGHAM B15 2TT GB

DUFFUS JAMES E.
U.S.D.A. - Agricultural Research Serv.
1636 E. Alisal St.
93905 SALINAS - CA USA

FENG LANXIANG
I.V.F. - C.A.of Agricultural Sciences
30, Baishiqiao Road
100081 BEIJING PRC

FLETCHER JOHN
N.Z.Institute for Crop & Food Research
P.O.B. 4704
CHRISTCHURCH NZ

GAL-ON AMIT
Dept. of Plant Virology, ARO
Volcani Center-P.O.Box 6
50250 BET-DAGAN IL

GENTILI ALESSANDRO
Centro Studi e Ricerche in Agricoltura
Via Walter Tobagi 1/c
60030 S.MARIA NUOVA AN I

GERA ABED
Ministry of Agriculture-Dept. of Virology
Volcani Center-P.O.Box 6
50250 BET-DAGAN IL

GRASSI GIANPAOLO
Istit. Sperim. per le Culture Industriali
Via di Corticella, 133
40129 BOLOGNA I

GREEN SYLVIA
Asian Veget. Research and Developm. Center
P.O.Box 42
TW - 74199 SHANHUA TAINAN RC

GRIECO FRANCESCO
Centro Studio Virus e Virosi Culture Mediterranee
CNR
Via Amendola 165/A
70126 BARI BA I

GRIECO PASQUALE DOMENICO
Metapontum Agrobios
S.S Jonica 106, Km. 448,2
75010 METAPONTO MT I
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Address 1</th>
<th>Address 2</th>
<th>City</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAMULA DORDE</td>
<td>Dept. of Botany, Faculty of Science</td>
<td>Marulices trg 20/11</td>
<td>HR - 10000 ZAGREB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARZACHI' CRISTINA</td>
<td>Istituto di Fitovirologia Applicata - CNR</td>
<td>Strada delle Cacce 73</td>
<td>10135 TORINO TO I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASENGA VERA</td>
<td>Istituto di Fitovirologia Applicata - CNR</td>
<td>Strada delle Cacce 73</td>
<td>10135 TORINO TO I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAVRIC IRENA</td>
<td>National Institute of Biology</td>
<td>Vecna Pot 111</td>
<td>1000 LJUBLJANA SLO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MELA LUCIANO</td>
<td>Istit. Regionale per la Floricoltura di Sanremo</td>
<td>Via Carducci, 12</td>
<td>18038 SANREMEO IM I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MILNE ROBERT G.</td>
<td>Istituto di Fitovirologia Applicata - CNR</td>
<td>Strada delle Cacce 73</td>
<td>10135 TORINO TO I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MORIONES ENRIQUE</td>
<td>Consejo Superior de Investigaciones Científicas</td>
<td>E.E. "La Mayora"</td>
<td>E - 29750 ALGARROBO-COSTA (MALAGA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAVAS-CASTILLO JESUS</td>
<td>Consejo Superior de Investigaciones Científicas</td>
<td>E.E. "La Mayora"</td>
<td>E - 29750 ALGARROBO-COSTA (MALAGA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORIS EMANUELA</td>
<td>Istituto di Fitovirologia Applicata - CNR</td>
<td>Strada delle Cacce 73</td>
<td>10135 TORINO TO I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PALUKAITIS PETER</td>
<td>Scottish CROP Research Institute</td>
<td>INVERGOWRIE</td>
<td>DUNDEE DDT 5DA GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLAK JAROSLAV</td>
<td>Research Inst. of Crop Production</td>
<td>Drnovska 507, Praha 6</td>
<td>CZ - 16106 PRAGUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RACCAH BENJAMIN</td>
<td>Virus Vector lab.-Dept. of Virology</td>
<td>Volcani Center-P.O.Box 6</td>
<td>50250 BET-DAGAN IL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REY CHRISTINE</td>
<td>Dept. Plant Sciences - University of Arizona</td>
<td>Forbes Building Room 303</td>
<td>85721 TUCSON - AZ USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIEDLE MONIKA</td>
<td>B.F.L.</td>
<td>Spargelfeldstrasse 191</td>
<td>A - 1226 WIEN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ROGGERO PIERO
Istituto di Fitovirologia Applicata - CNR
Strada delle Cacce 73
10135 TORINO TO I

SCHUBERT JOERG
BAZ-Institute for Resistance Research
Theodor-Roemer-Weg 4
D - 6449 ANSCHERSLEBEN

SCHUBERT LJUDMILA
In Vitro Service GmbH
Albert Drosihn Str.
D - 6449 ANSCHERSLEBEN

SPAK JOSEF
Instit. of Plant Molecular Biology
Branisovska 31
CZ - 37005 CESKE BUDEJOVICE

SPENCE NICOLA
Horticulture Research International
Wellesbourne
WARWICH CV35 9EF GB

STAVOLONE LIVIA
Via Universitá, 100
80055 PORTICI NA I

STIJGER INEKE
R. S. for Floriculture & Glasshouse Veget.
P. O. Box 8
NL - 2670 AA NAALDWIJK

STRAVATO VITTORIO MARIO
Peto Italiana S.r.l.
Via Canneto di Rodi snc
04010 BORGO SABOTINO LT I

TOMASSOLI LAURA
Istituto Sperim. Patologia Vegetale
Via C.G. Bertero, 22
00156 ROMA RM I

VAIRA ANNA MARIA
Istituto di Fitovirologia Applicata - CNR
Strada delle Cacce 73
10135 TORINO TO I

VAN DER VLUGT RENE'
IPO - DLO
P. O. Box 9060
NL - 6700 GW WAGENINGEN

VECCHIATI MANUELA
Istituto di Fitovirologia Applicata - CNR
Strada delle Cacce 73
10135 TORINO TO I

VERHOEVEN JACOBUS TH.J.
Plant Protection Service
P. O. Box 9102
NL - 6700 HC WAGENINGEN

VETTEN HEINRICH JOSEF
B.B.f.Land u. Forstwirtschaft
Messeweg 11-12
D - 38104 BRAUNSCHWEIG
WALSH JOHN
Horticulture Research International
Wellesbourne
WARWICH CV35 9EF GB

WISLER GAIL
U.S.D.A. - Agricultural Research Serv.
1636 E. Alisal St.
93905 SALINAS - CA USA

YURTGEN MELIKE
University of Cukurova-Faculty of Agriculture
Plant Protection Dept.
1330 ADANA TR
Appendix II List of oral papers and poster presented
PROGRAMME

Saturday, 22

19.00-21.00 Welcome buffet

Sunday, 23

9.00-9.15 Opening of the Conference

SESSION I: IDENTIFICATION, CHARACTERISATION AND NEW DISEASES

9.15-9.45 Chair: J. Vetten
Key lecture: H. Huttinga

9.45-10.00 DISTINGUISHING CHARACTERISTICS OF SOME NEW WHITEFLY-TRANSMITTED CRINIVIRUSES INFECTING TOMATO
Wisler G. C., Duffus J. E., Liu H.-Y. and Karasev A. V.

10.00-10.15 EVIDENCE FOR A PHYTOREOVIRUS IN LEAF-CURL AFFECTED TOBACCO
IN SOUTH AFRICA
Rev M.E.C., Boccardo G., D'Andrea E., Calvers-Evert J. and Paximadis M.

10.15-10.30 APICAL NECROSIS OF TOMATO CAUSED BY A STRAIN OF PARIETARIA
MOTTLE ILARVIRUS
Lisa V., Ramasso E., Ciuffo M. and Roggero P.

10.30-10.45 IDENTIFICATION OF TMV STRAINS FROM EGGPLANT, TOMATO AND
PEPPER ON BIOLOGICAL PROPERTIES
Gnutova I.V., Tolckach V.F. and Gnutova R.V.

10.45-11.30 Coffee break

11.30-11.45 SUSCEPTIBILITY OF TOMATO AND PEPPER CULTIVARS UNDER
GLASSHOUSE CONDITIONS TO INFECTION WITH SOME
TOBAMOVIRUSES
Mamula D. and Juretic N.

11.45-12.00 FURTHER EVIDENCE THAT SHALLOT YELLOW STRIPE AND WELSH
ONION YELLOW STRIPE VIRUSES ARE DIFFERENT STRAINS OF A
DISTINCT POTYVIRUS

12.00-12.15 A CARLAVIRUS IN SLOVENIAN GARLIC IS RELATED TO CARNATION
LATENT VIRUS AND DIFFERS FROM GARLIC COMMON LATENT VIRUS
Mavric L., Ravnikar M.and Milne R.G.

12.15-12.30 ZUCCHINI YELLOW MOSAIC VIRUS AND WATERMELON MOSAIC VIRUS
2 INFECTIONS IN THE NETHERLANDS
Verhoeven J.Th.J. and Roenhorst J.W.

12.30-14.30 Lunch
14.30-15.00 Chair: M. Barba
Key lecture - G. Adam: TOSPOVIRUSES - A NEVER-ENDING STORY?

15.00-15.15 DETECTION OF IRIS YELLOW SPOT TOSPOVIRUS IN ISRAEL
Gera A., Kritzman A., Cohen J. and Raccah B.

15.15-15.30 MOLECULAR DIAGNOSIS OF GARLIC DWARF REOVIRUS
Marzachi C., Lot H. and Boccardo G.

15.30-15.45 COMPARISON OF THE 5'-END NUCLEOTIDE SEQUENCES OF TURNIP
YELOWS LUTEOVIRUS ISOLATES
Schubert J., Rabenstein F., Graichen K., and Richter K.

15.45-16.15 Coffee break

16.15-16.30 ASSOCIATION OF ASTER YELLOWS PHYTOPLASMA WITH A STUNTING
DISEASE OF TOMATO IN SARDINIA
Coghe, F., Sulis, C., d'Aquilio, M., Marzachi, C., Veratti, F. and
Boccardo, G.

16.30-16.45 IDENTIFICATION OF STOLBUR-RELATED PHYTOPLASMAS INFECTING
TOMATOES IN PORTUGAL BY NESTED PCR AND TISSUE-PRINT
IMMUNOASSAY
Louro D., Vibio M., Paltrinieri S. and Bertaccini A.

16.45-17.00 General discussion

Monday, 24

SESSION II: ECOLOGY AND EPIDEMIOLOGY

9.00-9.30 Chair: H. Lot
Key lecture - J. Duffus: IMPACT OF VIRUS ECOLOGY AND
EPIDEMIOLOGY STUDIES IN CALIFORNIA AGRICULTURE

9.30-9.45 VIRUSES OF HOT PEPPER IN ETHIOPIA
Hiskias Y., Lesemann D.-E. and Vetten H.J.

9.45-10.00 POTYVIRUSES IN NEW ZEALAND BUTTERCUP SQUASH (CUCURBITA
MAXIMA)
Fletcher J.D., Nott H.M., Wallace A.R., Rogers B.T. and Herman J.B.

10.00-10.15 CHARACTERIZATION OF THE BIOLOGICAL, SEROLOGICAL AND
MOLECULAR VARIABILITY AMONG TURNIP MOSAIC POTYVIRUS
ISOLATES IN CAMPANIA, ITALY
Stavolone, L., Alioto, D., Ragozzino, A. and Laliberté, J.-F.

10.15-10.30 EPIDEMIC OUTBREAKS IN TOMATO AND A NOVEL DISEASE OF
COMMON BEAN IN SPAIN ARE CAUSED BY TOMATO YELLOW LEAF
CURL VIRUS-IS
Moriones E.

10.30-10.45 EPIDEMIOLOGY AND FIELD MECHANICAL TRANSMISSION OF RADISH
MOSAIC VIRUS IN Eruca SATIVA CROPS
Lovisolo Q., Caciagli P., Lisa V., Guglielmone L. and Conti M.
10.45-11.15 Coffee break
11.15-11.45 Key lecture - H. Lecog
11.45-12.00 MUTATIONS WITHIN THE PTK MOTIF OF THE HELPER COMPONENT PROTEIN GENE AFFECT THE PROTEIN ABILITY TO BIND TO VIRIONS AND TO MEDIATE ZYMV TRANSMISSION BY APHIDS Raccab B., Peng Y.-H., Kadouri D., Huet, H. and Gal-On A.
12.00-12.15 HISTOCHEMICAL AND CYTOCHEMICAL INVESTIGATIONS ON THE VIRUS-VECTOR SYSTEM TOMATO YELLOW LEAF CURL GEMINIVIRUS-BEMISIA TABACI. Appiano A., Caciagli P., Dore B., Bonelli S. and Faoro F.
12.15-12.30 RISKS ASSESSMENT OF GENETICALLY MODIFIED TOMATO Ilardi V., Tomassoli L. and Barba M.
12.30-12.45 General discussion
12.45-14.30 Lunch
14.30-16.30 POSTER SESSION
(see page 102 for list of posters)
16.30-17.00 Coffee break
17.00-18.30 Visit to the Istituto di Fitovirologia Applicata

Tuesday, 25
7.30 - 20.30 Technical visit to the CeRSAA and Cooperativa L’Ortofrutticola at Albenga (SV), Italian Riviera

Wednesday 26

SESSION III: CONTROL, INCLUDING ENGINEERED RESISTANCE

9.00-9.30 Chair: A. Gera
 Key lecture - B. Raccab: CONTROL OF VECTOR-BORNE VIRUSES: MANAGING HOST SUSCEPTIBILITY AND VECTOR ACTIVITY

9.30-9.45 RESISTANCE TO ONION YELLOW DWARF VIRUS AND LEEK YELLOW STRIPE VIRUS FOUND IN A "FERTILE" GARLIC CLONE Lot H., Chovelon V., Souche S., Leroux J.P. and Delecalle B.

9.45-10.00 IDENTIFICATION OF NOVEL GENES FOR RESISTANCE TO BEAN COMMON MOSAIC VIRUS IN PHASEOLUS VULGARIS Donovan G.M., Spence N.J., Pink D.A.C. and Wood K.R.

10.00-10.15 RADISH (RAPANUS SATIVUS L.) AS A RESISTANCE RESOURCE TO TURNIP MOSAIC VIRUS Krämer R., Marthe F., Klocke E., Ryschka U., Schumann G. and Clauss E.
10.15-10.30 INTERACTIONS BETWEEN BRASSICAS AND TURNIP MOSAIC VIRUS (TuMV)
 Walsh J.A., Jenner C. E., Hughes S.L., Lehmann P., Petrizik K., Derek
 Lydiate J. Sharpe A.J. and Rusholme R.L.

10.30-11.00 Coffee break

11.00-11.15 EVALUATION OF TOLERANCE TO TOMATO YELLOW LEAF CURL VIRUS
 DERIVED FROM DIFFERENT WILD LYCOPERSICON SPECIES
 Ioannou N., Ioannou M., and Hadjinicolicis A.

11.15-11.30 THE EFFECT OF TYLCV ON NEW BREEDING LINES WITH HIGH LEVEL
 OF RESISTANCE TO THE VIRUS
 Lapidot M., Friedmann M., Cohen S. and Pilowsky M.

11.30-12.00 Chair: R. van der Vliet
 Key lecture - B. Gronenborn

12.00-12.15 ENGINEERING RESISTANCE TO TOMATO YELLOW LEAF CURL VIRUS BY
 EXPRESSING A TRUNCATED REP GENE
 Accotto G.P., Tavazza M., Noris E., Brunetti A., Crespi S, Caciagli P.
 and Tavazza R.

12.15-12.30 USE OF INFECTIOUS cDNA TO STUDY THE PATHOGENICITY OF
 LETTUCE MOSAIC POTYVIRUS (LMV).
 Le Gall O., Candresse T., Redondo E., German-Retana S., Alias E.,
 Yang S.-J., Revers F., Lot H., Souche S. and Dunez J.

12.30-14.30 Lunch

14.30-14.45 COAT PROTEIN MEDIATED RESISTANCE TO PROTECT TOMATO CROP
 AGAINST CUCUMBER MOSAIC VIRUS
 Tomassoli L. and Barba M.

14.45-15.00 TRANSGENIC PEPPER PLANTS CONTAINING CUCUMBER MOSAIC
 VIRUS satRNA cDNA
 Feng L.-X., Dong C.-Z., Jiang C.-X., Guo J.-Z.

15.00-15.15 PROTECTION AGAINST CUCUMBER MOSAIC VIRUS SUPPORTING A
 NECROGENIC satRNA IN TRANSGENIC TOMATO PLANTS EXPRESSING
 AN ANTISENSE RNA
 Grieco P.D., Cillo F., Arpaia S., Cellin F. and Gallitelli D.

15.15-15.45 General discussion

15.45-16.15 Coffee break

16.45-17.30 Business meeting

20.00-23.00 Social dinner
Thursday, 27

SESSION IV: HOST-PATHOGENS INTERACTIONS

9.30-10.00 Chair: N. Spence
Key lecture - P. Palukaitis: STRATEGIES, ROUTES & BARRIERS TO
VIRUS MOVEMENT WITHIN PLANTS
Palukaitis P., MacFarlane S.A., Oparka K.J. and Santa Cruz S.

10.00-10.15 LOCALIZATION OF T-REP OF TOMATO YELLOW LEAF CURL VIRUS IN
TRANSGENIC PLANTS
Noris E., Masenga V., Tavazza M., Milne R.G. and Accotto G.P.

10.15-10.30 POSSIBLE ROLE OF OXIDATIVE STRESS AND ANTIOXIDANT ENZYMES
IN SYSTEMIC VIRUS-HOST PLANT INTERACTIONS
Riedle-Bauer M.

10.30-10.45 ENZYMATIC ACTIVITY AND SUBCELLULAR LOCALIZATION OF POTATO
VIRUS X 25 kDa MOVEMENT PROTEIN AND ITS DELETION MUTANTS.
ATTEMPT TO STUDY FUNCTIONAL ROLE OF PROTEIN DOMAINS
Kalinina N.O., Fedorkin O.N., Samuilova O.V., Solovyev A.G. and
Morozov S.Yu.

10.45-11.30 Coffee break

11.30-12.00 General discussion

12.00-12.30 Closing of the Conference
POSTER SESSION

1.1) IDENTIFICATION OF PHYTOPLASMA INFECTING WINTER OILSEED RAPE IN THE CZECH REPUBLIC AND ITS COMPARISON WITH ITALIAN BRASSICA PHYTOPLASMAS
Fráňová, J., Voráčková, Z., Víbio, M., Bertaccini, A., Navrátil, M., Špak, J. and Nebesářová, J. 67

1.2) CHARACTERIZATION OF CHILLI VEINAL MOTTLE VIRUS AS A POTYVIRUS DISTINCT FROM PEPPER VEINAL MOTTLE VIRUS

1.3) SEROTYPES OF TURNIP MOSAIC VIRUS
Jenner, C.E., Keane, G., Jones, J. and Walsh, J.A. 70

1.4) VARIATION IN RESPONSE OF CUCURBITA spp. TO WATERMELON MOSAIC VIRUS-2 INFECTION
Křížková, E. & Lebeda, A. 72

1.5) RESPONSE OF CUCURBITA PEPO AND CUCURBITA MAXIMA GENOTYPES TO A CZECH ISOLATE OF ZUCCHINI YELLOW MOSAIC VIRUS
Lebeda, A., Křížková, E., Kozelská, S., Jokeš, M. & Rodová, J. 76

1.6) A NEW BIPARTITE GENOME CLOSTEROVIRUS TRANSMITTED BY BANDED-WING WHITEFLY (TRIALEURODES ABUTTINONEA)
Liu, H.-Y., Wisler, G. C. and Duffus, J. E. 77

1.7) STUDIES ON ETIOLOGY OF YELLINGING AND CHLOROSIS IN TOMATOES M THE CZECH REPUBLIC
Polák, J., Chod, J. and Pivalová, J. 78

1.8) TOMATO YELLOW LEAF CURL VIRUS ASSOCIATED WITH DWARFING AND LEAF CURL OF GREEN BEANS IN ALGARVE (SOUTHERN PORTUGAL)
Louro, D. and Accotto, G.P. 79

1.9) SEROLOGICAL VARIABILITY AMONG EUROPEAN ISOLATES OF RADISH MOSAIC VIRUS
Špak, J. and Kubelková, D. 80

1.10) RAPID DIFFERENTIATION OF CLOSELY RELATED ISOLATES OF ZUCCHINI YELLOW MOSAIC VIRUS BY POLYMERASE CHAIN REACTION AND RESTRICTION FRAGMENT LENGTH POLYMORPHISM ANALYSIS
Spence, N.J., Miller, A., Barbara, D.J. and Morton, A. 81

1.11) A TYPICAL (FAR-EASTERN) STRAIN OF CUCUMBER MOSAIC VIRUS ON PEPPER
Tolkach, V.F. and Gnoutova, R.V. 82

1.12 THE IMPORTANCE OF A PLANT VIRUS COLLECTION
van der Vlugt, R.A.A., Cuperus, C. and Vink, J. 83

1.13) AN UNDESCRIBED SEED-BORNE VIRUS ON VOLUNTEER CHICORY
Vovlas C., Grieco, F., Lafortezza, R. & Greco, N. 84
I.1) IDENTIFICATION OF PHYTOPLASMA INFECTING WINTER OILSEED RAPE IN THE CZECH REPUBLIC AND ITS COMPARISON WITH ITALIAN BRASSICA PHYTOPLASMAS
Fráňová, J., Voráčková, Z., Víbio, M., Bertaccini, A., Navrátil, M., Špak, J. and Nebesářová, J.

I.2) CHARACTERIZATION OF CHILLI VEINAL MOITLE VIRUS AS A POTYVIRUS DISTINCT FROM PEPPER VEINAL MOITLE VIRUS

I.3) SEROTYPES OF TURNIP MOSAIC VIRUS
Jenner, C.E., Keane, G., Jones, J. and Walsh, J.A.

I.4) VARIATION IN RESPONSE OF Cucurbita spp. TO WATERMELON MOSAIC VIRUS-2 INFECTION
Křížková, E. & Lebeda, A.

I.5) RESPONSE OF Cucurbita pepo AND Cucurbita maxima GENOTYPES TO A CZECH ISOLATE OF ZUCCHINI YELLOW MOSAIC VIRUS
Lebeda, A., Křížková, E., Kozelská, S., Jokeš, M. & Rodová, J.

I.6) A NEW BIPARTITE GENOME CLOSTEROVIRUS TRANSMITTED BY BANDED-WING WHITEFLY (Trialeurodes abutilonea)
Liu, H.-Y., Wisler, G. C. and Duffus, J. E.

I.7) STUDIES ON ETIOLOGY OF YELLOWING AND CHLOROSIS IN TOMATOES M THE CZECH REPUBLIC
Polák, J., Chod, J. and Plivalová, J.

I.8) TOMATO YELLOW LEAF CURL VIRUS ASSOCIATED WITH DWARFING AND LEAF CURL OF GREEN BEANS IN ALGARVE (SOUTHERN PORTUGAL)
Louro, D. and Accotto, G.P.

I.9) SEROLOGICAL VARIABILITY AMONG EUROPEAN ISOLATES OF RADISH MOSAIC VIRUS
Špak, J. and Kubelková, D.

I.10) RAPID DIFFERENTIATION OF CLOSELY RELATED ISOLATES OF ZUCCHINI YELLOW MOSAIC VIRUS BY POLYMERASE CHAIN REACTION AND RESTRICTION FRAGMENT LENGTH POLYMORPHISM ANALYSIS
Spence, N.J., Miller, A., Barbara, D.J. and Morton, A.

I.11) A TYPICAL (FAR-EASTERN) STRAIN OF CUCUMBER MOSAIC VIRUS ON PEPPER
Tolkach, V.F. and Gnutova, R.V.

I.12 THE IMPORTANCE OF A PLANT VIRUS COLLECTION
van der Vlugt, R.A.A., Cuperus, C. and Vink, J.

I.13) AN UNDESCRIBED SEED-BORNE VIRUS ON VOLUNTEER CHICORY
Vovlas C., Greco, F., Laforteza, R. & Greco, N.
II.14) EPIDEMIOLOGY OF MOSAIC VIRUS DISEASES IN OPEN FIELD MELON (CUCUMIS MELO L.) CROPS IN SPAIN

II.15) Borago officinalis L., A NEW NATURAL HOST OF BROAD BEAN WILT FABAVIRUS
Bellardi, M. G., Rubies-Autonell, C., Rovida, I. 86

II.16) OVERWINTERING OF TOMATO SPOTTED VIRUS AND ITS VECTOR FRANKLINIELLA OCCIDENTALIS IN COMMERCIAL GLASSHOUSES
Pop, J. and Horgos, A. 88

II. 17) TOMATO SPOTTED WILT VIRUS ON PEPPERS IN ICEL PROVINCE OF TURKEY
Yurtmen, M., Guldur, M.E. and Yılmaz, M.A. 91

III.18) SELECTION FOR RESISTANCE TO TOMATO SPOTTED WILT VIRUS (TSWV) IN TOMATO

III.19) SCREENING OF Cucumis spp. GERmplASM FOR RESISTANCE TO CUCUMBER MOSAIC VIRUS, PAPAYA RINGSPOT VIRUS-W, WATERMELON MOSAIC VIRUS-II AND ZUCCHINI YELLOW MOSAIC VIRUS
Moriones, E., Gómez-Guillamón, M.L. and Camero, R. 94

III.20) SENSIVITY OF SELECTED HYBRIDS AND VARIETIES OF BRASSICA PEKINENSIS AND BRASSICA CHINENSIS TO TURNIP YELLOW MOSAIC VIRUS INFECTION
Chod, J., Polák, J., Chodová, D. and Jokeš, M. 95

III.21) PEPPER MILD MOTTLE VIRUS INFECTIONS IN SWEET PEPPER VARIETIES RESISTANT TO THE PATHOTYPES P1.2 AND P1.2.3

INDEX OF AUTHORS 97

CONTENTS 99
II.14) EPIDEMIOLOGY OF MOSAIC VIRUS DISEASES IN OPEN FIELD MELON (CUCUMIS MELO L.) CROPS IN SPAIN

II.15) BORAGO OFFICINALIS L., A NEW NATURAL HOST OF BROAD BEAN WILT FABAVIRUS
Bellardi, M. G., Rubies-Autonell, C., Rovida, I. 86

II.16) OVERWINTERING OF TOMATO SPOTTED VIRUS AND ITS VECTOR FRANKLINIELLA OCCIDENTALIS IN COMMERCIAL GLASSHOUSES
Pop, J. and Horgos, A. 88

II.17) TOMATO SPOTTED WILT VIRUS ON PEPPERS IN ICEL PROVINCE OF TURKEY
Yurtmen, M., Guldur, M.E. and Yilmaz, M.A. 91

III.18) SELECTION FOR RESISTANCE TO TOMATO SPOTTED WILT VIRUS (TSWV) IN TOMATO

III.19) SCREENING OF CUCUMIS spp. GERMLAPSM FOR RESISTANCE TO CUCUMBER MOSAIC VIRUS, PAPAYA RINGSPOt VIRUS-W, WATERMELON MOSAIC VIRUS-II AND ZUCCHINI YELLOW MOSAIC VIRUS
Moriones, E., Gómez-Guillamón, M.L. and Camero, R. 94

III.20) SENSIVITY OF SELECTED HYBRIDS AND VARIETIES OF BRASSICA PEKINENSIS AND BRASSICA CHINENSIS TO TURNIP YELLOW MOSAIC VIRUS INFECTION
Chod, J., Polák, J., Chodová, D. and Jokeš, M. 95

III.21) PEPPER MILD MOTTLE VIRUS INFECTIONS IN SWEET PEPPER VARIETIES RESISTANT TO THE PATHOTYPES P1.2 AND P1.2.3

INDEX OF AUTHORS 97

CONTENTS 99